Fabian Gwinner
Sprechstunden:
! aktuell keine Beutreuung von Studierendenarbeiten (weder Seminararbeiten noch Thesen)
Forschungsinteressen:
- applied Machine Learning, Künstliche Intelligenz, Data Mining,
Forschungsprojekte:
- DeepScan
- PipeAI
Kurzlebenslauf:
- Seit 2019 Research Assistant Julius-Maximilians-Universität Würzburg
- 2014 bis 2019 Senior Solution Consultant Supply Chain Management (Consilio GmbH)
- 2014 Master of Science Wirtschaftsinformatik an der Julius-Maximilians-Universität Würzburg
- 2014 Werksstudent FIS GmbH Grafenrheinfeld
- 2012 Bachelor of Science Wirtschaftsinformatik an der DHBW Mosbach (T-Systems)
Xing: https://www.xing.com/profile/Fabian_Gwinner/cv
LinkedIn: https://www.linkedin.com/in/fabian-gwinner/
Veröffentlichungen:
- Hofmann, A., Gwinner, F., Fuchs, K., & Winkelmann, A. (2020). An Industry-Agnostic Approach for the Prediction of Return Shipments. In Americas Conference on Information Systems (AMCIS), Salt Lake City.
- Fuchs, A., Fuchs, K., Gwinner, F., & Winkelmann, A. (2021). A Meta-Model for Real-Time Fraud Detection in ERP Systems. In Proceedings of the 54th Hawaii International Conference on System Sciences.
- Tritscher, J., Krause, A., Schlör, D., Gwinner, F., von Mammen, S., & Hotho, A. (2021) A financial game with opportunities for fraud. In Proceedings of IEEE-CoG 2021
- Hofmann, A., Gwinner, F., Winkelmann, A., and Janiesch, C. (2021) Security Implications of Consortium Blockchains: The Case of Ethereum Networks, 12 (2021) JIPITEC - Journal of Intellectual Property, Information Technology and E-Commerce Law. 347 para 1.
- Tritscher, J., Gwinner, F., Schlör, D., Krause, A., & Hotho, A. (2022). Open ERP System Data For Occupational Fraud Detection. arXiv preprint arXiv:2206.04460, https://doi.org/10.48550/arXiv.2206.04460
- Tritscher, J., Schlör, D., Gwinner, F., Krause, A., Hotho, A. (2023). Towards Explainable Occupational Fraud Detection. In: Koprinska, I., et al. Machine Learning and Principles and Practice of Knowledge Discovery in Databases. ECML PKDD 2022. Communications in Computer and Information Science, vol 1753. Springer, Cham. https://doi.org/10.1007/978-3-031-23633-4_7
- Schascheck, M., Gwinner, F., Winkelmann, A. (forthcoming). From Black Box to Glass Box: Evaluating the Faithfulness of Process Predictions with GCNNs,
ECML PKDD 2023. Communications in Computer and Information Science. Springer, Cham. - Gwinner, F., Tomitza, C., Winkelmann, A. (forthcoming). Comparing expert systems and their explainability through similarity. 2024 DSS
Working Papers:
- Investigating Synthetic data for Product Return prediction.
Lehrveranstaltungen:
- [WiSe21/22] Integrierte Informationsverarbeitung Wuestudy
- [WiSe20/21] Integrierte Informationsverarbeitung
- [WiSe19/20] Integrierte Informationsverarbeitung
- [WiSe18/19] Business Software 1: Systemgestützte Unternehmensführung
Sonstiges:
- Organizer local DSSML Paper Reading Group: Link